Abstract

The C-H activation of methane catalyzed by cis- and trans-platin in aqueous solution has been studied by density functional based computational methods. By analogy with the Shilov reaction, the initial step is the replacement of an ammonia ligand by methane, followed by the formation of a methyl complex and the elimination o a proton. The computations utilize the B3LYP hybrid functionals, effective core potentials, and double-{zeta} to polarized double-{zeta} basis sets and include solvation effects by a dielectric continuum method. In contrast with the Shilov reaction studied by Seigbahn and Crabtree (J.Am.Chem.Soc. 1996, 118, 4443), in the platins the replacement of an ammonia ligand by methane is found to be effectively rate determining, in that the energy barriers to C-H activation are comparable with those of the initial substitution reaction, viz. {approximately} 34 and 44 kcal/mol for cis- and trans-platin, respectively. Several reaction pathways for C-H activation and subsequent proton elimination were identified. For cis-platin the energy barriers associated with the oxidative addition and {sigma}-bond metathesis type mechanisms were found to be comparable, while for trans-platin oxidative addition is predicted to be strongly preferred over {sigma}-bond metathesis, which, interestingly, also proceeds through a Pt(IV) methyl hydrido complex as reaction intermediate.more » In line with accepted ideas on trans influence, the methyl and hydride ligands in the Pt(IV) complexes that arise in the oxidative addition reactions were always found to be cis to each other. On the basis of the population analyses on the Pt(IV) complexes it is suggested that the Pt-H and Pt-CH{sub 3} bonds are best described as covalent bonds and, further, that the preference of the hydride and methyl anions to be cis to each other is a consequence of such covalent bonding. In light of these findings, the energies of several methyl Pt(IV) hydrido bisulfate complexes were also recalculated, with CH{sub 3} and H places cis to each other. The revised results provide evidence for the thermodynamic feasibility of oxidative addition of methane to catalysts such as [Pt(NH{sub 3}){sub 2}(OSO{sub 3}H){sub 2}] or [Pt(NH{sub 3}){sub 2}(OSO{sub 3}H)(H{sub 2}SO{sub 4})]{sup +}.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.