Abstract

A suite of diagnostics is proposed to characterize microwave plasma dissociation of CO2: laser scattering, Fourier transform infrared spectroscopy, and passive emission imaging. It provides a comprehensive performance characterization as is illustrated on the basis of experiments in a 2.45 GHz, 1 kW microwave reactor with tangential gas injection. For example, two operating regimes are identified as function of pressure: the diffuse and constricted plasma mode. Their occurrence is explained by evaluation of microwave propagation, which changes with the electron‐heavy particle collision frequency ve−h. In the diffuse mode, gas temperatures of 1500–3500 K are determined. The measured conversion degree, specific energy input, and temperature are summarized in a two‐temperature thermal model, which is solved to obtain the gas temperature at the periphery of the reactor and the size of the hot zone. Solutions are found with edge temperatures of hundreds of K, and hot zone fractions which agree with the measured behavior. The agreement shows that non‐thermal processes play only a marginal role in the measured parameter space of the diffuse discharge. In the constricted mode, the radial plasma size is independent of power. A skin depth equal to the plasma size corresponds to electron densities of 1018–1019 m−3. Temperatures in the central filament are in the range 3000–5000 K. Both discharge modes are up to 50% energy efficient in CO production. Rayleigh signals increase in the afterglow, hinting at rapid gas cooling assuming that the gas composition remains unchanged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.