Abstract

By the employment of a homogeneous biorecognition reaction to induce the assembled formation of DNA nanostructures at an electrode, herein we develop a novel biosensing method for the ultrasensitive electrochemical detection of kanamycin (Kana) antibiotic. A DNA complex consisting of Kana-aptamer and a hairpin DNA with an exposed 3′-end was first designed for conducting the homogeneous reaction with Kana in the presence of exonuclease I (Exo I). It resulted in the production of a hairpin DNA with a blunt terminus, which could be used for triggering the assembled formation of a layer of DNA nanostructures with orderly distribution and abundant biotin sites at a gold electrode. Then, high-content methylene blue and horseradish peroxidase (HRP)-functionalized gold nanotags would be captured onto the electrode to realize the electrocatalytic signal transduction. Due to the Exo I and HRP-assisted dual signal amplification, a very low detection limit of 9.1 fg mL−1 was obtained for the Kana assay along with a very wide linear range over five-order of magnitude. Considering the excellent performance of the method, it exhibits a promising prospect for practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.