Abstract

Epstein-Barr virus (EBV) has been associated with several malignancies as Burkitt's lymphoma, nasopharyngeal carcinoma, and Hodgkin's disease. In those diseases, Epstein-Barr nuclear antigen 1 (EBNA-1) is constitutively expressed. Here, we reported an innovative system to detect active EBNA-1 protein in a homogeneous assay. The system is based on the modulation of thrombin activity by a self-complementary single stranded DNA (scssDNA), which was designed and synthesized to mimic the palindromic target sites of EBNA-1 in the EBV genome. This model system showed a limit of detection of 3.75 ng mL(-1) of active EBNA-1 protein with a dynamic detection range from 3.75 to 250 ng mL(-1) with a correlation coefficient of 0.997. This new homogeneous assay for active EBNA-1 protein detection and quantification provides a very useful tool for rapid screening of EBNA-1 blockers in biomedical research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call