Abstract

To improve the rehydration ability of bacterial cellulose (BC), many macromolecules have been used as modifiers in previous reports. However, the aggregation of additives in the BC matrix appears to be inevitable. We investigated different parts of a BC pellicle, which was achieved by in situ modification with carboxymethyl cellulose (CMC) in culture with Gluconacetobacter xylinus ATCC53582 or Enterobacter sp. FY-07. We observed a concentration gradient of CMC in the BC pellicle from G. xylinus ATCC53582, but not with Enterobacter sp. FY-07. Low concentrations of CMC (0.01 %, m/v) are sufficient to modify BC in situ in culture with Enterobacter sp. FY-07, in which CMC could sufficiently contact with the newly formed BC. The crystallinity of the modified BC decreased by more than 39.8 %, and its rehydration ability and water holding capacity increased by 43.3 and 31.0 %, respectively. Unlike the pellicle of modified BC achieved from obligate aerobes, such as G. xylinus ATCC53582, that produced by Enterobacter sp. FY-07 exhibited better homogeneity and porosity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.