Abstract

We present numerical simulations of nucleation kinetics of vacancies and interstitials during RTA and we study the impact of annealing temperature on bulk micro defect concentration. Since the concentration of vacancies and oxygen and also its diffusion kinetics are significantly different inside Czochralski silicon, we assume the nucleation of vacancies and oxygen independent on each other. We show that different populations of voids formed during RTA can influence formation of oxygen precipitate nuclei. According to classical nucleation theory the homogeneous nucleation dominates around temperatures 500 °C while the calculation of oxygen diffusion into the voids shows that the oxygen clusters over the critical size can be formed above temperatures 700 °C. The nuclei concentration of BMD is thus the superposition of homogeneous nucleation below 700 °C and heterogeneous one prevailing above 700 °C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.