Abstract

BackgroundAllopolyploidy is widespread in angiosperms, and they can coordinate two or more different genomes through genetic and epigenetic modifications to exhibit stronger vigor and adaptability. To explore the changes in homologous gene expression patterns in the natural allotetraploid Brassica napus (AnAnCnCn) relative to its two diploid progenitors, B. rapa (ArAr) and B. oleracea (CoCo), after approximately 7500 years of domestication, the global gene pair expression patterns in four major tissues (stems, leaves, flowers and siliques) of these three species were analyzed using an RNA sequencing approach.ResultsThe results showed that the ‘transcriptomic shock’ phenomenon was alleviated in natural B. napus after approximately 7500 years of natural domestication, and most differentially expressed genes (DEGs) in B. napus were downregulated relative to those in its two diploid progenitors. The KEGG analysis indicated that three pathways related to photosynthesis were enriched in both comparison groups (AnAnCnCn vs ArAr and AnAnCnCn vs CoCo), and these pathways were all downregulated in four tissues of B. napus. In addition, homoeolog expression bias and expression level dominance (ELD) in B. napus were thoroughly studied through analysis of expression levels of 27,609 B. rapa-B. oleracea orthologous gene pairs. The overwhelming majority of gene pairs (an average of 86.7%) in B. napus maintained their expression pattern in two diploid progenitors, and approximately 78.1% of the gene pairs showed expression bias with a preference toward the A subgenome. Overall, an average of 48, 29.7 and 22.3% homologous gene pairs exhibited additive expression, ELD and transgressive expression in B. napus, respectively. The ELD bias varies from tissue to tissue; specifically, more gene pairs in stems and siliques showed ELD-A, whereas the opposite was observed in leaves and flowers. More transgressive upregulation, rather than downregulation, was observed in gene pairs of B. napus.ConclusionsIn general, these results may provide a comprehensive understanding of the changes in homologous gene expression patterns in natural B. napus after approximately 7500 years of evolution and domestication and may enhance our understanding of allopolyploidy.

Highlights

  • Allopolyploidy is widespread in angiosperms, and they can coordinate two or more different genomes through genetic and epigenetic modifications to exhibit stronger vigor and adaptability

  • An average of 85.5, 63.9, and 63.7% of the reads from the samples of B. rapa, B. oleracea, and B. napus were uniquely mapped to the A genome [47], the C genome [46], and the integrated A-C genome, respectively (Table 1)

  • The results showed that the ‘transcriptomic shock’ phenomenon was alleviated in natural B. napus after approximately 7500 years of natural domestication

Read more

Summary

Introduction

Allopolyploidy is widespread in angiosperms, and they can coordinate two or more different genomes through genetic and epigenetic modifications to exhibit stronger vigor and adaptability. Autopolyploids consist of multiple sets of identical or similar genomes from intraspecific genome duplication, while allopolyploids are composed of two or more different homoeologous genomes from interspecific or intergeneric hybridization [9]. Both autopolyploids and allopolyploids are very common in nature [10, 11], and many major crops or cash crops are allopolyploids, such as rapeseed (Brassica napus), wheat (Triticum aestivum), tobacco (Nicotiana tabacum) and cotton (Gossypium hirsutum). Allopolyploids exhibiting greater vigor and adaptation to various biotic and abiotic stresses is believed to be critical in the differentiation and speciation of plants [12,13,14]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.