Abstract

Abstract States with explicit quantum character, such as squeezed vacuum and bright squeezed light, as well as coherent states and incoherent superpositions of coherent states were generated and analysed by tomographical methods. Wigner functions, photon-number distributions, density matrices and phase distributions were reconstructed with high accuracy. Features such as photon number oscillations, sub-Poissonian and super-Poissonian photon statistics, bifurcations of the phase distribution, and loss of coherence were observed, demonstrating the usefulness of quantum state reconstruction as an analysing tool in quantum optics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.