Abstract
We demonstrate laser-based adaptive ultrasonic detection through turbid media using a photorefractive quantum well as a receiver, and a fsec-laser as a light source. An adaptive Mach-Zehnder interferometer is based upon two-wave mixing for homodyne detection. When the fsec-laser propagates through the turbid media, the transmitted light shows the first arrived unscattered signals and the delayed scattered background. Two laser pulses from a signal arm and a reference arm in the interferometer are combined at the adaptive holographic quantum well film. By choice of center wavelength, the two pulses are phase-locked for compensation of wavefront phase distortions. In addition, the scattered background is eliminated by adjusting the optical delay of the reference arm. Using this system, ultrasonic homodyne signals through 11 mean-free paths (mfp) turbid media are successfully detected.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.