Abstract

The atherogenic mechanism of homocystinemia has been defined by measuring endothelial cell loss and regeneration, platelet consumption, and intimal lesion formation in a primate model. Three groups of baboons were studied: (a) 8 control animals; (b) 15 animals after 3 mo of continuous homocystinemia; and (c) 11 animals after 3 mo of combined homocystinemia and oral treatment with dipyridamole. Experimental homocystinemia caused patchy endothelial desquamation comprising about 10% of the aortic surface despite a 25-fold increase in endothelial cell regeneration. Neither endothelial cell loss nor regeneration was changed significantly by dipyridamole. Homocystine-induced vascular deendothelialization produced a threefold increase in platelet consumption that was interrupted by dipyridamole inhibition of platelet function. All homocystinemic animals developed typical arteriosclerotic or preatherosclerotic intimal lesions composed of proliferating smooth muscle cells averaging 10-15 cell layers surrounded by large amounts of collagen, elastic fibers, glycosaminoglycans, and sometimes lipid. Intimal lesion formation was prevented by dipyridamole therapy. We conclude that homocystine-induced endothelial cell injury resulted in arteriosclerosis through platelet-mediated intimal proliferation of smooth muscle cells that can be prevented by drug-induced platelet dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.