Abstract

Hyperhomocysteinemia and insulin resistance are independent factors for cardiovascular disease. Most of the angiotoxic effects of homocysteine are related to the formation of homocysteine thiolactone and the consequent increase in oxidative stress. We have recently found that homocysteine thiolactone inhibits insulin receptor tyrosine kinase activity, which results in decreased phosphatidylinositol 3-kinase (PI3K) activity and inhibition of glycogen synthesis. Oxidative stress seemed to be the mechanism underlying these effects, since glutathione was able to restore the insulin signaling as well as the insulin-mediated glycogen synthesis. In the present work we have further investigated insulin receptor signaling studying mitogen-activated protein kinase (MAPK), glycogen synthase kinase-3 (GSK-3) and p70 S6K phosphorylation. Again, homocysteine thiolactone (50 microM) prevented insulin-mediated MAPK, GSK-3 and p70 S6K phosphorylation and these effects were blocked by glutathione (250 microM). Since MAPK and PI3K pathways, including GSK3 and S6K, seem to mediate insulin-mediated growth and proliferation, we measured DNA and protein synthesis. We have found that homocysteine thiolactone (50 microM) inhibits insulin-mediated growth and proliferation, as previously shown for glycogen synthesis. Again, these effects seem to be mediated by oxidative stress, since 250 microM glutathione completely abolished the effects of homocysteine thiolactone on insulin-stimulated DNA and protein synthesis. In conclusion, these data suggest that homocysteine thiolactone impairs insulin signaling by a mechanism involving oxidative stress, leading to a defect in the action of insulin on growth and proliferation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.