Abstract

Elevated levels of homocysteine are a risk factor for vascular disease, thrombosis, neural tube defects and dementia. The 677C>T polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene appears to be the most important single determinant of plasma homocysteine concentration. In the current study, we estimated heritability and fit a series of models of inheritance for both fasting and postmethionine-load homocysteine levels in the HOFAM-study (HOmocysteine in FAMilies study), which included 306 participants from 51 pedigrees, ascertained through a hyperhomocysteinemic proband. The crude heritability was 21.6% for fasting and 67.5% for postloading homocysteine. After adjustment for MTHFR 677C>T genotype, heritability dropped to 5.2 and 63.9%, respectively. Segregation analysis revealed that a nongenetic model with equal transmission was the best fitting and most parsimonious model for fasting homocysteine levels, while a two-distribution, Mendelian model with residual familial correlation was best for postmethionine-load homocysteine levels. This study shows that postload homocysteine levels have a stronger genetic determination than do fasting homocysteine levels. The heritability of postload homocysteine levels were not strongly affected by adjustment for MTHFR 677C>T genotype, in contrast to fasting homocysteine levels. Further studies are needed to identify the genes responsible for the inheritance of postload homocysteine levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call