Abstract

Increased homocysteine levels in blood might be an important risk factor for the development of cardiovascular diseases. Connective tissue growth factor (CTGF) was found to be involved in atherosclerotic plaque progression. So far, the possible connection between homocysteine and CTGF has not been studied. This study was designed to test whether homocysteine could induce CTGF expression in vascular smooth muscle cells (VSMC). Hyperhomocysteinemia was induced in Sprague-Dawley rats after 4 weeks of a high-methionine diet. CTGF mRNA and protein expression was detected in the aortas isolated from hyperhomocysteinemic rats, but not in the controls. The underlying mechanism of homocysteine-induced CTGF expression was investigated in cultured human umbilical vein smooth muscle cells (HUVSMC). CTGF mRNA expression was induced after treatment with dl-homocysteine (50 micromol L(-1)) for 1 h, which remained at the elevated level for up to 8 h. CTGF protein level increased after homocysteine treatment for 8 h, and the elevated status was maintained for up to 48 h. Several intracellular signals elicited by homocysteine are involved in CTGF synthesis, including protein kinase C (PKC) activation and reactive oxygen species (ROS). Transfection HUVSMCs with a CTGF small interference RNA (siRNA) plasmid, which specifically inhibited the expression of CTGF, decreased extracellular matrix (ECM) accumulation caused by homocysteine. Our results demonstrate that homocysteine could increase the expression of CTGF in VSMC both in vivo and in vitro. The novel findings suggest that homocysteine might contribute to accelerated progression of atherosclerotic lesions by inducing CTGF expression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.