Abstract

Elevated plasma homocysteine (Hcy) is a risk factor for cardiovascular disease. While Hcy has been shown to promote endothelial dysfunction by decreasing the bioavailability of nitric oxide and increasing oxidative stress in the vasculature, the effects of Hcy on cardiomyocytes remain less understood. In this study we explored the effects of hyperhomocysteinemia (HHcy) on myocardial function ex vivo and examined the direct effects of Hcy on cardiomyocyte function and survival in vitro. Studies with isolated hearts from wild type and HHcy mice (heterozygous cystathionine-beta synthase deficient mice) demonstrated that HHcy mouse hearts had more severely impaired cardiac relaxation and contractile function and increased cell death following ischemia reperfusion (I/R). In isolated cultured adult rat ventricular myocytes, exposure to Hcy for 24h impaired cardiomyocyte contractility in a concentration-dependent manner, and promoted apoptosis as revealed by terminal dUTP nick-end labeling and cleaved caspase-3 immunoblotting. These effects were associated with activation of p38 MAPK, decreased expression of thioredoxin (TRX) protein, and increased production of reactive oxygen species (ROS). Inhibition of p38 MAPK by the selective inhibitor SB203580 (5μM) prevented all of these Hcy-induced changes. Furthermore, adenovirus-mediated overexpression of TRX in cardiomyocytes significantly attenuated Hcy-induced ROS generation, apoptosis, and impairment of myocyte contractility. Thus, Hcy may increase the risk for CVD not only by causing endothelial dysfunction, but also by directly exerting detrimental effects on cardiomyocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.