Abstract

We recently demonstrated that homocysteine (Hcys) increases superoxide (O2-) production via NADH/NADPH oxidase in renal mesangial cells. This O2- production contributes to increased expression of tissue inhibitor of metalloproteinase (TIMP-1) and consequent deposition of collagen in response to Hcys. However, the mechanism by which Hcys activates NADH/NADPH oxidase remains unknown. Given that ceramide is an intracellular activator of this oxidase in several cell types, the present study tests the hypothesis that Hcys activates NADH/NADPH oxidase through a ceramide-mediated signaling pathway in rat mesangial (MG) cells, resulting in O2- production. Rat MG cells were incubated with L-homocysteine (L-Hcys) to determine the mechanism by which Hcys activates NADH/NADPH oxidase. Thin layer chromatography (TLC), Western blot analysis, Rac GTPase activity pull down assay, and NADH/NADPH oxidase activity measurements were performed. TLC analysis demonstrated that L-Hcys increased de novo production of ceramide in MG cells. L-Hcys and increased ceramide did not alter the amount of NADH/NADPH oxidase subunit p47phox and p67phox in both membrane and cytosolic fractions from MG cells. However, L-Hcys or ceramide markedly increased the level of GTP-bound Rac, which was accompanied by enhanced activity of NADH/NADPH oxidase. These Hcys or ceramide-induced actions were substantially blocked by a Rac GTPase inhibitor, GDPbetaS, and a de novo ceramide synthesis inhibitor, fumonisin B1 (FB1). These results indicate that Hcys activates NADH/NADPH oxidase by stimulating de novo ceramide synthesis, and subsequently enhancing Rac GTPase activity in rat MG cells. This ceramide-Rac GTPase signaling pathway may mediate Hcys-induced oxidative stress in these glomerular cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.