Abstract

<p style='text-indent:20px;'>We consider a homoclinic orbit to a saddle fixed point of an arbitrary <inline-formula><tex-math id="M1">\begin{document}$ C^\infty $\end{document}</tex-math></inline-formula> map <inline-formula><tex-math id="M2">\begin{document}$ f $\end{document}</tex-math></inline-formula> on <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^2 $\end{document}</tex-math></inline-formula> and study the phenomenon that <inline-formula><tex-math id="M4">\begin{document}$ f $\end{document}</tex-math></inline-formula> has an infinite family of asymptotically stable, single-round periodic solutions. From classical theory this requires <inline-formula><tex-math id="M5">\begin{document}$ f $\end{document}</tex-math></inline-formula> to have a homoclinic tangency. We show it is also necessary for <inline-formula><tex-math id="M6">\begin{document}$ f $\end{document}</tex-math></inline-formula> to satisfy a 'global resonance' condition and for the eigenvalues associated with the fixed point, <inline-formula><tex-math id="M7">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \sigma $\end{document}</tex-math></inline-formula>, to satisfy <inline-formula><tex-math id="M9">\begin{document}$ |\lambda \sigma| = 1 $\end{document}</tex-math></inline-formula>. The phenomenon is codimension-three in the case <inline-formula><tex-math id="M10">\begin{document}$ \lambda \sigma = -1 $\end{document}</tex-math></inline-formula>, but codimension-four in the case <inline-formula><tex-math id="M11">\begin{document}$ \lambda \sigma = 1 $\end{document}</tex-math></inline-formula> because here the coefficients of the leading-order resonance terms associated with <inline-formula><tex-math id="M12">\begin{document}$ f $\end{document}</tex-math></inline-formula> at the fixed point must add to zero. We also identify conditions sufficient for the phenomenon to occur, illustrate the results for an abstract family of maps, and show numerically computed basins of attraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.