Abstract

We are concerned with the existence of homoclinic solutions for the following second order nonautonomous singular Hamiltonian systemsu¨+atWuu=0, (HS) where-∞<t<+∞,u=u1,u2, …,uN∈ℝNN≥3,a:ℝ→ℝis a continuous bounded function, and the potentialW:ℝN∖{ξ}→ℝhas a singularity at0≠ξ∈ℝN, andWuuis the gradient ofWatu. The novelty of this paper is that, for the case thatN≥3and (HS) is nonautonomous (neither periodic nor almost periodic), we show that (HS) possesses at least one nontrivial homoclinic solution. Our main hypotheses are the strong force condition of Gordon and the uniqueness of a global maximum ofW. Different from the cases that (HS) is autonomousat≡1or (HS) is periodic or almost periodic, as far as we know, this is the first result concerning the case that (HS) is nonautonomous andN≥3. Besides the usual conditions onW, we need the assumption thata′t<0for allt∈ℝto guarantee the existence of homoclinic solution. Recent results in the literature are generalized and significantly improved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.