Abstract
The main aims of this paper are to study the persistence of homoclinic and heteroclinic orbits of the reduced systems on normally hyperbolic critical manifolds, and also the limit cycle bifurcations either from the homoclinic loop of the reduced systems or from a family of periodic orbits of the layer systems. For the persistence of homoclinic and heteroclinic orbits, and the limit cycles bifurcating from a homolinic loop of the reduced systems, we provide a new and readily detectable method to characterize them comparing with the usual Melnikov method when the reduced system forms a generalized rotated vector field. To determine the limit cycles bifurcating from the families of periodic orbits of the layer systems, we apply the averaging methods. We also provide two four-dimensional singularly perturbed differential systems, which have either heteroclinic or homoclinic orbits located on the slow manifolds and also three limit cycles bifurcating from the periodic orbits of the layer system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.