Abstract

Life on Earth, as we know it to day, is inseparable from homochirality. The presence of an enantiomeric excess in carbonaceous chondrites is well documented; among the different hypotheses considered to explain this undisputed fact, we chose to investigate the possibilities open by a selective adsorption on a chiral surface that would engage a process of enantiomeric enrichment. The chiral surface is that of the α-quartz and the chiral molecule is lactic acid, HOCH(CH3 )COOH. In this theoretical work we rely on numerical simulations based on Density Functional Theory (DFT) that proved efficient in the super-molecule and periodic approaches to this category of phenomena. In view of the different types of adsorption sites, a statistical treatment was necessary; it shows that (S)-lactic acid is preferentially adsorbed with a selectivity of ~0.7 kcal/mol with respect to the (R) isomer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.