Abstract

We employed two pairs of new in-situ-generated chiral amino acid-tetrazole ligands in constructing homochiral Zn(II) coordination compounds: [Zn(tzet)]n (1a for (S)-tzet and 1b for (R)-tzet, H2tzet = N-[2-(1H-tetrazol-5-yl)ethyl]tryptophan) and [Zn(tzep)(H2O)2]·H2O (2a for (S)-tzep and 2b for (R)-tzep, H2tzep = N-[2-(1H-tetrazol-5-yl)ethyl]proline), which were hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Structural analysis reveals that 1 features a 2D homochiral framework generated by both tetrazolate and carboxylate bridges in tzet(2-) ligands. The isolated structure of 2 is stabilized by extensive hydrogen bonds, which leads to formation of a supramolecular 2D architecture. The absolute configuration induced at the nitrogen atoms of 1 and 2 is strictly related to the neighboring chiral carbon atoms by hydrogen-bond interactions. To further investigate their chirality, the combined experimental and theoretical analyses of circular dichroism spectra reveal the absolute configurations and nature of the Cotton effects. Solid-state excitation and emission spectra for 1 and 2 at room temperature were investigated with relevant density of states calculation, and tunable photoluminescence emission of 1 under different excitation wavelengths was discussed. As nitrogen-rich tetrazolate compounds, 1 and 2 possess higher enthalpies of combustion and may serve as a new family of promising energetic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call