Abstract
In this work, homochiral reduced imine cage was covalently bonded to the surface of the silica to prepare a novel high-performance liquid chromatography stationary phase, which was applied for the multiple separation modes such as normal phase, reversed-phase, ion exchange, and hydrophilic interaction chromatography. The successful preparation of the homochiral reduced imine cage bonded silica stationary phase was confirmed by performing a series of methods including X-ray photoelectron spectroscopy, thermogravimetric analysis, and infrared spectroscopy. From the extracted results of the chiral resolution in normal phase and reversed-phase modes, it was demonstrated that seven chiral compounds were successfully separated, among which the resolution of 1-phenylethanol reached the value of 3.97. Moreover, the multifunctional chromatographic performance of the new molecular cage stationary phase was systematically investigated in the modes of reversed-phase, ion exchange, and hydrophilic interaction chromatography for the separation and analysis of a total of 59 compounds in eight classes. This work demonstrated that the homochiral reduced imine cage not only achieved multiseparation modes and multiseparation functions performance with high stability, but also expanded the application of the organic molecular cage in the field of liquid chromatography.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.