Abstract

The formation of diastereoisomeric libraries of oligopeptides through the heterogeneous polymerization of racemic crystals of phenylalanine N-carboxyanhydride (PheNCA) is reported. The diastereoisomeric compositions of the oligopeptides formed on polymerization of (R,S) crystals incorporating the deuterium-tagged S enantiomer were determined by MALDI-TOF mass spectrometry. The racemic mixtures of the oligopeptides longer than pentamers are represented primarily by diastereoisomers of homochiral sequence and with peptides containing only one heterochiral repeating unit. A mechanism comprising the following three sequential steps to account for this unusual observation is proposed: 1) formation of dimers and trimers at a partially damaged liquid/solid interface, 2) chain propagation that takes place within the bulk of the crystal through a lattice-controlled "zipper-like" mechanism between homochiral molecules arranged in a head-to-tail motif to yield crystalline antiparallel beta-sheets of alternating oligopeptide chains of homochiral sequence of opposite handedness, and 3) enantiomeric cross-inhibition that results in chain termination. Induced desymmetrization of the racemic mixtures of the formed peptides was achieved by the polymerization of the mixed quasi-racemic crystals of (R)-PheNCA, ((S)-PheNCA), and (S)-ThieNCA (3-(2-thienyl)-alanine N-carboxyanhydride) of various compositions. These experiments resulted in the formation of nonracemic libraries of oligopeptides composed of homochiral chains of (R)-Phe and copolymers of randomly distributed (S)-Phe and (S)-Thie sequences. From these findings, we propose a stochastic model for the generation of libraries of nonracemic mixtures of oligopeptides from the polymerization of host (R,S)-PheNCA with racemic mixtures of other guest NCA amino acids dissolved in limited quantities in the crystal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call