Abstract

By the bridging action of the 6-chloro-2-hydroxypyridine (Hchp) ligand and the terminal coordination role of the homochiral ligand, (-)/(+)-3-trifluoroacetyl camphor (l-Htfc/d-Htfc), a pair of enantiomerically pure dysprosium(III) dinuclear complexes, [Dy2(l-tfc)4(chp)2(MeOH)2] (l-1) and [Dy2(d-tfc)4(chp)2(MeOH)2] (d-1), was obtained. Their circular dichroism (CD) spectra verified their enantiomeric nature. Magnetic investigation indicated that they exhibit ferromagnetic interaction and good zero field single-molecule magnet (SMM) properties. The Ueff/k values of l-1 and d-1 at 0 Oe are 180.5 and 181.3 K, respectively, which are large values for homochiral Dy(III) SMMs. A reasonable explanation for the magnetic properties of l-1 and d-1 was supplied by ab initio calculations. Remarkably, magnetic circular dichroism (MCD) investigation revealed that the chiral Dy2 enantiomers show a strong magneto-optical Faraday effect at room temperature, suggesting potential applications in magneto-optical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.