Abstract

Four new homochiral metal–organic frameworks (MOFs) based on S-malate anions and N-donor linkers of different length have been prepared under solvothermal conditions. [Cu(mal)(bpy)]·H2O (1), [Cu(mal)(bpe)]·2H2O (2), [Ni(mal)(bpy)]·1.3CH3OH (3) and [Ni(mal)(bpe)]·4H2O (4) (mal=S-malate, bpy=4,4′-bipyridil, bpe=trans-1,2-bis(4-pyridyl)ethylene) were characterized by a number of analytical methods including powder X-ray diffraction, elemental, thermogravimetric analyses, IR spectroscopy. Compounds 1–3 were structurally characterized by X-ray crystallography. The absence of the chiral ligand racemization under synthetic conditions was unambiguously confirmed by polarimetry experiments. Compounds 1 and 2 contain metal-malate layered motives, connected by N-donor linkers and contribute to the family of isoreticular Cu(II) malates and tartrates [Cu(mal)L] and [Cu(tart)L], (tart=tartrate; L=ditopic rigid organic ligand). The Ni-based compounds 3 and 4 share 1D chiral {Ni(mal)} motives and possess novel type of the chiral framework, previously unknown for chiral carboxylates. The linear N-donor linkers connect these chiral chains, thus controlling the channel diameter and guest accessible volume of the homochiral structure, which exceeds 60 %.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call