Abstract

A pair of homochiral coordination polymers, [Cu(DPT)]n (1M and 1P, HDPT = 3,5-di-4-pyridinyl-2H-tetrazole), were assembled from achiral precursors. Crystal structure analysis showed that they are chiral three-dimensional (3D) coordination polymers based on a new double-stranded helical building block that is composed of two different 1D helices. Interestingly, rare symmetry-breaking crystallization was observed, in which the possibility of obtaining enantio-enriched bulk product with excessive M enantiomers (1-A) was obviously higher than that for P enantiomers (1-B) as demonstrated in multiple, repeated experiments with single-crystal diffraction and vibrational circular dichroism (VCD) spectra. Moreover, compound [Cu(DPT)]n shows good chemical stability in water, with pH values ranging from 3 to 13, as well as in many common organic solvents. Photophysical properties, including thermochromic properties and two-photon excited luminescence, were studied, and the potential for applications in temperature sensing was exhibited. In addition, the photocatalytic degradation of methylene blue in water indicated that compound [Cu(DPT)]n can be used as a photocatalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call