Abstract

A series of homochiral metal-organic cages (MOCs) have been obtained from self-assembly of Cu(II) salts with chiral N,N'-(bicyclo[2,2,2]oct-7-ene-tetracarboxylic)-bis-amino acids. Single-crystal X-ray diffraction analyses reveal that these compounds show a lantern-type cage structure, in which one pair of Cu2(CO2)4 paddlewheels is linked by four diacid ligands. The resulting homochiral cages have been fully characterized by EA, TOF-MS, TGA, VTPXRD, IR, UV, and CD measurements. The catalytic tests reveal that these Cu(II) cages are effective in cyclopropanation with excellent diastereoselectivity (up to 99 : 1 E/Z). In addition, the cage catalysts can promote the aziridination reaction with PhI=NNs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.