Abstract

We investigated roles for homocellular (endothelium or smooth muscle) and heterocellular (myoendothelial) conduction pathways along hamster cheek pouch arterioles in vivo (n=64; diameter, 33+/-1 microm). Endothelium-dependent and -independent vasoactive agents were delivered from micropipettes (0.5 or 1 second pulse) onto an arteriole while observing diameter changes at defined distances along the vessel. Acetylcholine (ACh) produced maximal diameter (63+/-1 microm) locally and vasodilation conducted rapidly ( approximately 10 microm response at 2 mm, <1 second). Responses to bradykinin (BK) were similar, whereas sodium nitroprusside produced maximal dilation locally without conduction. KCl evoked biphasic conduction of vasoconstriction and vasodilation, whereas phenylephrine (PE) produced conducted vasoconstriction. Disrupting the integrity of endothelium as a conduction pathway using focal light-dye treatment (LDT) abolished conducted vasodilation to BK and to KCl but not to ACh. Disruption of smooth muscle integrity with LDT abolished conducted vasoconstriction with no effect on conducted vasodilation. After LDT of respective cell layers at sites 1 mm apart, vasodilation to ACh conducted past disrupted smooth muscle or disrupted endothelium, but not beyond both sites in series. The loss of conduction after selective LDT indicates a lack of effective myoendothelial coupling along the arteriolar wall. During NO synthase inhibition (L-NA, 100 micromol/L), conducted vasodilation was abolished to BK and to KCl yet remained intact to ACh. However, after LDT of smooth muscle, L-NA inhibited conduction to ACh by 60%. Thus, conduction of vasodilation entails a wave of NO release along arteriolar endothelium that is masked when smooth muscle provides a parallel conduction pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.