Abstract
The role of bridging and terminal ligand electronic and steric properties on the structure and antiproliferative activity of two-coordinated gold(I) complexes was investigated on seven novel binuclear and trinuclear gold(I) complexes synthesized by the reaction of either Au2(dppm)Cl2, Au2(dppe)Cl2, or Au2(dppf)Cl2 with potassium diisopropyldithiophosphate, K[(S-OiPr)2], potassium dicyclohexyldithiophosphate, K[(S-OCy)2], or sodium bis(methimazolyl)borate, Na(S-Mt)2, which afforded air-stable gold(I) complexes. In 1-7, the gold(I) centers adopt a two-coordinated linear geometry and are structurally similar. However, their structural features and antiproliferative properties highly depend upon subtle ligand substituent changes. All complexes were validated by 1H, 13C{1H}, 31P NMR, and IR spectroscopy. The solid-state structures of 1, 2, 3, 6, and 7 were confirmed using single-crystal X-ray diffraction. A density functional theory geometry optimization calculation was used to extract further structural and electronic information. To investigate the possible cytotoxicities of 2, 3, and 7, in vitro cellular tests were carried out on the human cancerous breast cell line MCF-7. 2 and 7 show promising cytotoxicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.