Abstract

Recent synthetic approaches to a series of [P9]X salts (X = [F{Al(ORF)3}2], [Al(ORF)4], and (RF = C(CF3)3); Ga2Cl7) overcome limitations in classical synthesis methods that proved unsuitable for phosphorus cations. These salts contain the homopolyatomic cation [P9]+ via (I) oxidation of P4 with NO[F{Al(ORF)3}2], (II) the arene-stabilized Co(I) sandwich complex [Co(arene)2][Al(ORF)4] [arene = ortho-difluorobenzene (o-DFB) and fluorobenzene (FB)], or (III) the reduction of [P5Cl2][Ga2Cl7] with Ga[Ga2Cl7] as Ga(I) source in the presence of P4. Quantum chemical CCSD(T) calculations suggest that [P9]+ formation from [Co(arene)2]+ occurs via the nido-type cluster [(o-DFB)CoP4]+, which resembles the isoelectronic, elusive [P5]+. Apparently, the nido-cation [P5]+ forms intermediately in all reactions, particularly during the Ga(I)-induced reduction of [P5Cl2]+ and the subsequent pick up of P4 to yield the final salt [P9][Ga2Cl7]. The solid-state structure of [P9][Ga2Cl7] reveals the anticipated D2d-symmetric Zintl-type cage for the [P9]+ cation. Our approaches show great potential to bring other [Pn]+ cations from the gas to the condensed phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call