Abstract

Human lipin1 catalyzes the highly regulated conversion of phosphatidic acids to diacylglycerides. Lipin's cellular location, protein partners, and biological function are directed by phosphorylation-dephosphorylation events catalyzed by the phosphoserine phosphatase dullard. To define the determinants of dullard substrate recognition and catalysis, and hence, lipin regulation, steady-state kinetic analysis was performed on phosphoserine-bearing nonapeptides based on the phosphorylation sites of lipin. The results demonstrate that dullard shows specificity for the peptide corresponding to the insulin-dependent phosphorylation site (Ser106) of lipin with a k(cat)/K(m) of 2.9 × 10(4) M(-1) s(-1). These results are consistent with a coil-loop structure for the insulin-dependent phosphorylation site on human lipin1 and make unlikely the requirement for an adaptor protein to confer activity such as that proposed for the yeast homologue.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call