Abstract
ABSTRACTWe introduce hom-Lie-Rinehart algebras as an algebraic analogue of hom-Lie algebroids, and systematically describe a cohomology complex by considering coefficient modules. We define the notion of extensions for hom-Lie-Rinehart algebras. In the sequel, we deduce a characterization of low dimensional cohomology spaces in terms of the group of automorphisms of certain abelian extension and the equivalence classes of those abelian extensions in the category of hom-Lie-Rinehart algebras, respectively. We also construct a canonical example of hom-Lie-Rinehart algebra associated to a given Poisson algebra and an automorphism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.