Abstract

Highly evolved eusocial insects such as ants return from a food source to their nest by the shortest possible distance. This form of navigation, called path-integration, involves keeping track of the distance travelled and the angles steered on the outbound journey, which then aids in the computation of the shortest return distance. In featureless terrain, ants rely on the path integrator to travel the entire distance to return to the nest, whereas in landmark-rich habitats ants are guided by visual cues and in the absence of the visual cues homing ants rely on the path integrator to travel only an initial 10-60 cm of the homebound distance. The functioning of the path integrator in a habitat of intermediate landmark density is unknown. The findings reported here show that when the outward journey is on a familiar foraging area, and the inward journey is on an unfamiliar area, the Australian route-following desert ant Melophorus bagoti relies on the path integrator and consistently travels half the distance of the outward trip. However, when both the outward and inward trips are performed in plain and featureless channels, which blocks the distinct terrestrial visual cues, ants travel the entire distance accurately. A similar half-way abbreviation of the home vector occurs when the ant's outward trip is in an L-shaped channel and the homeward trip is over an open and unfamiliar region. The ecological significance of these new findings is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call