Abstract

The Internet of Things (IoT) is going to develop integrated and organised networks of all things and beings in the world enabling autonomous computing and information communication for the creation of new values in the future. For such networks by IoT that accept a certain level of communication delay, but that must realise highly-reliable message forwarding, Delay Tolerant Network (DTN) gives a possible solution. Recently, DTN has attracted attention as a future network under challenged network environments where communication delay, disruption, and disconnect frequently occurs. In this chapter, we review some routing protocols for efficient message forwarding in DTN. We also review some mobility models often used for simulating motions of mobile nodes to evaluate the performance of DTN. In this review, we propose our mobility model called Homesick Levy Walk that mimics human mobility patterns of an universal scale-free property of the frequency of human contacts. After this, we also propose our utility-based routing protocol which maximises the expected number of selected relay nodes being likely to encounter a destination node under sequential encounters with nodes. We evaluate the performance of our routing protocol by comparing with some performance measures of some existing routing protocols under the condition that the Homesick Levy Walk is adopted as mobility model. We show that our protocol is comparable to others in arrival rate of messages under a smaller number of message forwarding.We also find that the performance of our protocol is stable up to a few hundred mobile nodes and tends to be scalable with the number of nodes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.