Abstract

Climate change, population growth and rapidly increasing urbanisation severely threaten water quantity and quality in Sub-Saharan Africa. Treating wastewater is necessary to preserve the water bodies; reusing treated wastewater appears a viable option that could help to address future water challenges. In areas already suffering energy poverty, the main barrier to wastewater treatment is the high electricity demand of most facilities. This work aims to assess the benefits of integrating renewable energy technologies to satisfy the energy needs of a wastewater treatment facility based on a conventional activated sludge system, and also considers the case of including a membrane bioreactor so treated wastewater can be reused for irrigation. Using HOMER, a software tool specifically developed for optimal analysis of hybrid micro-generation systems, we identify the optimal combination of renewable energy technologies for these facilities when located in a specific water-stressed area of Sub-Saharan Africa and assess whether the solutions are cost-effective. The analysis shows investment in renewable technologies is cost-effective when the true cost of electricity or average days of power outages per year are considered. Integration of photovoltaic panels, a wind turbine and internal combustion engine fuelled by biogas produced by anaerobic digestion can cover between 33% and 55% of the electricity demand of the basic wastewater facility, at a levelised cost of energy lower than the true cost of electricity. In the case of water reuse, the techno-economically viable solutions identified by HOMER can cover 13% of energy needs. Finally, we discuss how the proposed solutions could provide a large contribution to socio-political security, in both domestic and cross-border contexts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.