Abstract

Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.

Highlights

  • Some of Ramon y Cajal’s most famous drawings are of dendrites, and though much of our fascination in his work is due to Cajal’s skill in rendering each branch in minute detail, some of the appeal is naturally due to the sheer variety in shape and size of cells

  • In Drosophila, knockdown of atlastin orthologs leads to endoplasmic reticulum (ER) network fragmentation in dendrites, though dendritic arborization defects only resulted when the knockdown was combined with a knockdown of inositol-requiring enzyme-1 (IRE1) (Liu et al, 2019; Summerville et al, 2016)

  • Thought of as chaperones that act as holdases to prevent protein aggregation in cell stress conditions, it has been discovered that several small heat shock proteins (Hsps) contribute to proper dendritic arborization in homeostatic conditions (Narberhaus, 2002; Bakthisaran et al, 2015)

Read more

Summary

Introduction

Some of Ramon y Cajal’s most famous drawings are of dendrites, and though much of our fascination in his work is due to Cajal’s skill in rendering each branch in minute detail, some of the appeal is naturally due to the sheer variety in shape and size of cells. Mutations in COPII components such as the coat proteins Sec13, Sec23, Sec24, and Sec31, as well as GTPases Rab1 and Sar1 cause reductions in dendritic growth and branching in Drosophila CIV neurons

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call