Abstract
BackgroundSleep is regulated by both a circadian and a homeostatic process. The homeostatic process reflects the duration of prior wakefulness: the longer one stays awake, the longer and/or more intense is subsequent sleep. In mammals, the best marker of the homeostatic sleep drive is slow wave activity (SWA), the electroencephalographic (EEG) power spectrum in the 0.5–4 Hz frequency range during non-rapid eye movement (NREM) sleep. In mammals, NREM sleep SWA is high at sleep onset, when sleep pressure is high, and decreases progressively to reach low levels in late sleep. Moreover, SWA increases further with sleep deprivation, when sleep also becomes less fragmented (the duration of sleep episodes increases, and the number of brief awakenings decreases). Although avian and mammalian sleep share several features, the evidence of a clear homeostatic response to sleep loss has been conflicting in the few avian species studied so far. The aim of the current study was therefore to ascertain whether established markers of sleep homeostasis in mammals are also present in the white-crowned sparrow (Zonotrichia leucophrys gambelii), a migratory songbird of the order Passeriformes. To accomplish this goal, we investigated amount of sleep, sleep time course, and measures of sleep intensity in 6 birds during baseline sleep and during recovery sleep following 6 hours of sleep deprivation.ResultsContinuous (24 hours) EEG and video recordings were used to measure baseline sleep and recovery sleep following short-term sleep deprivation. Sleep stages were scored visually based on 4-sec epochs. EEG power spectra (0.5–25 Hz) were calculated on consecutive 4-sec epochs. Four vigilance states were reliably distinguished based on behavior, visual inspection of the EEG, and spectral EEG analysis: Wakefulness (W), Drowsiness (D), slow wave sleep (SWS) and rapid-eye movement (REM) sleep. During baseline, SWA during D, SWS, and NREM sleep (defined as D and SWS combined) was highest at the beginning of the major sleep period and declined thereafter. Moreover, peak SWA in both SWS and NREM sleep increased significantly immediately following sleep deprivation relative to baseline.ConclusionAs in mammals, sleep deprivation in the white-crowned sparrow increases the intensity of sleep as measured by SWA.
Highlights
Sleep is regulated by both a circadian and a homeostatic process
A vast amount of data indicates that the electroencephalographic (EEG) activity in the low frequency range (0.5–4 Hz) of non-rapid eye movement (NREM) sleep, referred to as slow wave activity (SWA, or delta activity), is currently the best marker of the homeostatic sleep drive in mammals
Electrophysiological and behavioral correlates of baseline vigilance states Four behavioral states could be reliably distinguished based on visual inspection of the EEG and behavioral analysis: wakefulness, drowsiness, slow wave sleep (SWS) and rapideye movement (REM) sleep
Summary
Sleep is regulated by both a circadian and a homeostatic process. The homeostatic process reflects the duration of prior wakefulness: the longer one stays awake, the longer and/or more intense is subsequent sleep. The aim of the current study was to ascertain whether established markers of sleep homeostasis in mammals are present in the white-crowned sparrow (Zonotrichia leucophrys gambelii), a migratory songbird of the order Passeriformes. To accomplish this goal, we investigated amount of sleep, sleep time course, and measures of sleep intensity in 6 birds during baseline sleep and during recovery sleep following 6 hours of sleep deprivation. A vast amount of data indicates that the electroencephalographic (EEG) activity in the low frequency range (0.5–4 Hz) of non-rapid eye movement (NREM) sleep, referred to as slow wave activity (SWA, or delta activity), is currently the best marker of the homeostatic sleep drive in mammals. SWA increases locally after a learning task and is positively correlated with post-sleep performance improvement [15], suggesting that SWA may represent more than a measure of sleep need and intensity, but may mediate the restorative function of NREM sleep [15,16,17]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.