Abstract

Homeostatic Synaptic Plasticity Can Explain Posttraumatic Epileptogenesis in Chronically Isolated Neocortex Houweling AR, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ Cereb Cortex 2004 [Epub ahead of print] Permanently isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of posttraumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in permanently isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize neuronal activity) induced by low neuronal activity after deafferentation. To test this hypothesis, we constructed computer models of neocortex incorporating a biologically based homeostatic plasticity rule that operates to maintain firing rates. After deafferentation, homeostatic upregulation of excitatory synapses on pyramidal cells, either with or without concurrent downregulation of inhibitory synapses or upregulation of intrinsic excitability, initiated slowly repeating burst discharges that closely resembled the epileptiform burst discharges recorded in permanently isolated neocortex. These burst discharges lasted a few hundred milliseconds, propagated at 1 to 3 cm/s and consisted of large (10–15 mV) intracellular depolarizations topped by a small number of action potentials. Our results support a role for homeostatic synaptic plasticity as a novel mechanism of posttraumatic epileptogenesis. Excitatory and Inhibitory Postsynaptic Currents in a Rat Model of Epileptogenic Microgyria Jacobs KM, Prince DA J Neurophysiol 2005;93:687–696 Developmental cortical malformations are common in patients with intractable epilepsy; however, mechanisms contributing to this epileptogenesis are currently poorly understood. We previously characterized hyperexcitability in a rat model that mimics the histopathology of human four-layered microgyria. Here we examined inhibitory and excitatory postsynaptic currents in this model to identify functional alterations that might contribute to epileptogenesis associated with microgyria. We recorded isolated whole-cell excitatory postsynaptic currents and GABAA receptor–mediated inhibitory currents from layer V pyramidal neurons in the region previously shown to be epileptogenic (paramicrogyral area) and in homotopic control cortex. Epileptiform-like activity could be evoked in 60% of paramicrogyral (PMG) cells by local stimulation. The peak conductance of both spontaneous and evoked inhibitory postsynaptic currents was significantly larger in all PMG cells compared with controls. This difference in amplitude was not present after blockade of ionotropic glutamatergic currents or for miniature (m) inhibitory postsynaptic currents, suggesting that it was due to the excitatory afferent activity driving inhibitory neurons. This conclusion was supported by the finding that glutamatereceptor antagonist application resulted in a significantly greater reduction in spontaneous inhibitory postsynaptic current frequency in one PMG cell group (PMGE) compared with control cells. The frequency of both spontaneous and miniature excitatory postsynaptic currents was significantly greater in all PMG cells, suggesting that pyramidal neurons adjacent to a microgyrus receive more excitatory input than do those in control cortex. These findings suggest that there is an increase in numbers of functional excitatory synapses on both interneurons and pyramidal cells in the PMG cortex, perhaps due to hyperinnervation by cortical afferents originally destined for the microgyrus proper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call