Abstract
Guanylyl cyclase C (GC-C), the receptor for diarrheagenic enterotoxins and the paracrine ligands guanylin and uroguanylin, regulates intestinal secretion. Beyond volume homeostasis, its importance in modulating cancer cell proliferation and its uniform dysregulation early in colon carcinogenesis, reflecting loss of ligand expression, suggests a role for GC-C in organizing the crypt-villus axis. Here, eliminating GC-C expression in mice increased crypt length along a decreasing rostral-caudal gradient by disrupting component homeostatic processes. Crypt expansion reflected hyperplasia of the proliferating compartment with reciprocal increases in rapidly cycling progenitor cells and reductions in differentiated cells of the secretory lineage, including Paneth and goblet cells, but not enteroendocrine cells. GC-C signaling regulated proliferation by restricting the cell cycle at the G(1)/S transition. Moreover, crypt expansion in GC-C(-/-) mice was associated with adaptive increases in cell migration and apoptosis. Reciprocal alterations in proliferation and differentiation resulting in expansion associated with adaptive responses in migration and apoptosis suggest that GC-C coordinates component processes maintaining homeostasis of the crypt progenitor compartment. In the context of uniform loss of GC-C signaling during tumorigenesis, dysregulation of those homeostatic processes may contribute to mechanisms underlying colon cancer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.