Abstract

Upon nuclear envelope (NE) fragmentation in the prometaphase, the nuclear and cytosolic proteomes mix and must be redefined to reinstate homeostasis. Here, by using a molecular GFP ladder, we show that in early mitosis, condensed chromatin excludes cytosolic proteins. When the NE reforms tightly around condensed chromatin in late mitosis, large GFP multimers are automatically excluded from the nucleus. This can be circumvented by limiting DNA condensation with Q15, a condensin II inhibitor. Soluble small and other nuclear localization sequence (NLS)-targeted proteins then swiftly enter the expanding nuclear space. We then examined proteasomes, which are located in the cytoplasm and nucleus. A significant fraction of 20S proteasomes is imported by the importin IPO5 within 20 min of reformation of the nucleus, after which import comes to an abrupt halt. This suggests that maintaining the nuclear-cytosol distribution after mitosis requires chromatin condensation to exclude cytosolic material from the nuclear space, and specialized machineries for nuclear import of large protein complexes, such as the proteasome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.