Abstract

Homeostasis in cells maintains their survival and functions. The plasticity at neurons and synapses may destabilize their signal encoding. The rapid recovery of cellular homeostasis is needed to secure the precise and reliable encoding of neural signals necessary for well-organized behaviors. We report a homeostatic process that is rapidly established through Ca(2+)-induced coordination of functional plasticity among subcellular compartments. An elevation of cytoplasmic Ca(2+) levels raises the threshold potentials and refractory periods of somatic spikes, and strengthens the signal transmission at glutamatergic and GABAergic synapses, in which synaptic potentiation shortens refractory periods and lowers threshold potentials. Ca(2+) signals also induce an inverse change of membrane excitability at the soma versus the axon. The integrative effect of Ca(2+)-induced plasticity among the subcellular compartments is homeostatic in nature, because it stabilizes neuronal activities and improves spike timing precision. Our study of neuronal homeostasis that is fulfilled by rapidly coordinating subcellular compartments to improve neuronal encoding sheds light on exploring homeostatic mechanisms in other cell types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call