Abstract

BackgroundInvasive species are of substantial concern because they may threaten ecosystem stability and biodiversity worldwide. Not surprisingly, studies examining the drivers of biological invasion have increased in number over the past few decades in an effort to curtail invasive species success by way of informing management decisions. The common house gecko, Hemidactylus frenatus, has successfully invaded the Pacific islands where it appears to thrive in and dominate non-natural habitats offering high food availability (i.e., well-lit human dwellings) compared to native geckos. Previous work demonstrated that H. frenatus can outperform the native gecko, Lepidodactylus lugubris, in terms of maximal sprint speed on relatively simple planar surfaces (e.g., building walls). Lepidodactylus lugubris and other native geckos, however, may have superior locomotor performance in three-dimensional, structurally complex habitats.ResultsHere we compared the locomotor behaviour and exertion capacity of the native gecko, Gehyra oceanica, and the invasive gecko, Hemidactylus frenatus, on the island of Mo’orea, French Polynesia, on fabricated structures simulating structurally complex substrates. We found that the native gecko exhibits improved locomotor performance compared to the invasive gecko on structurally complex substrates. We also completed encounter surveys to document free-ranging habitat use and behaviour of these two species. We discovered that H. frenatus were more common in natural habitats than previously observed and used similar substrates as G. oceanica, although G. oceanica appeared to use substrates with greater perch heights (i.e., trees).ConclusionsOur findings revealed that locomotor performance in complex environments may contribute to the previously observed habitat segregation between native and invasive Pacific island geckos. Furthermore, our locomotor and habitat use data are consistent with the hypothesis that G. oceanica may be resistant to invasion of H. frenatus in natural environments. Our study calls for more detailed ecophysiological and ecomorphological studies of both native and invasive Pacific gecko species.

Highlights

  • Invasive species are of substantial concern because they may threaten ecosystem stability and biodiversity worldwide

  • Our locomotor and habitat use data are consistent with the hypothesis that G. oceanica may be resistant to invasion of H. frenatus in natural environments

  • While we studied the impact of structural complexity on locomotion of H. frenatus and a different native gecko, our results suggest that interspecific differences in locomotor behaviour and exertion capacity in structurally complex environments may contribute to the differential success of native and invasive species in such habitats

Read more

Summary

Introduction

Invasive species are of substantial concern because they may threaten ecosystem stability and biodiversity worldwide. Introduced species may be detrimental to communities or ecosystems by overutilizing local resources [7, 8], outcompeting native species [7, 9, 10], predating on organisms without adapted defences [5, 11, 12], introducing new parasites and diseases [13,14,15,16], and contributing to habitat degradation [17, 18]. Several mechanisms have been proposed to explain the apparent success of H. frenatus worldwide, including differences in aggression, foraging strategy, physiology, and habitat structure

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call