Abstract

Radio-telemetry was used to examine the home range, movement and habitat utilisation of the critically endangered Carpentarian rock-rat (Zyzomys palatalis) in an isolated habitat patch in the Gulf of Carpentaria hinterland over a 13-month period. Two home-range estimators were used in the study, (i) minimum convex polygon (MCP) and (ii) fixed Kernel (KL), the latter also being used to estimate core areas of activity. Based on a total sample size of 21 individuals, the mean MCP home range was 11 165 m2, similar to the mean KL home range of 10 687 m2. Core areas were, on average, 11.9% of the KL home-range estimate. There was no significant difference in the size of home range or core area of males and females. Juveniles had a significantly smaller home range than adults. Home ranges and, to a lesser degree, core areas were non-exclusive, with multiple areas of overlap (averaging 41% and 38% respectively) within and between all age and gender categories, but especially between males and between juveniles. Movement frequencies showed that animals made many short forays in a central area close to the arithmetic home-range mean and far fewer long forays of distances greater than 100 m from the central area. The spatial and temporal activity of Z. palatalis was concentrated in, but not confined to, the 'valley' and 'slope' habitats, with fewer movements of rats onto the surrounding 'plateau'. Resource selection analyses showed that Z. palatalis tended to prefer valley and slope habitats over the plateau and that the proportion of point locations was significantly higher for adults in the slope habitat and for juveniles in the valley habitat. Most home ranges were centred on the ecotone between these two habitat types. Although isolated and spatially limited, these habitat patches provide high-quality resources for dense populations of Z. palatalis. This study exemplifies a species' attempt to make efficient use of a limited resource in an otherwise hostile environment. Even small declines in habitat area or quality due to their vulnerability to fire would impact upon many animals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.