Abstract

One more coherent state quantization of a complex plane is presented. Although the complex plane is equipped with a non-rotationally invariant measure, we still obtain a canonical commutation rule (up to a simple rescaling). We explain how the involved coherent states, built from holomorphic continuations of Hermite polynomials, are related to the non-commutative plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.