Abstract

It is proved that CR functions on a quadratic cone M in \({\mathbb{C}^n}\), n > 1, admit one-sided holomorphic extension if and only if M does not have two-sided support, a geometric condition on M which generalizes minimality in the sense of Tumanov. A biholomorphic classification of quadratic cones in \({\mathbb{C}^2}\) is also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.