Abstract
AbstractGiven a compact complex manifold $M$, we investigate the holomorphic vector bundles $E$ on $M$ such that $\varphi ^* E$ is holomorphically trivial for some surjective holomorphic map $\varphi $, to $M$, from some compact complex manifold. We prove that these are exactly those holomorphic vector bundles that admit a flat holomorphic connection with finite monodromy homomorphism. A similar result is proved for holomorphic principal $G$-bundles, where $G$ is a connected reductive complex affine algebraic group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.