Abstract

Our aim here is to investigate the holomorphic geometric structures on compact complex manifolds which may not be Kähler. We prove that holomorphic geometric structures of affine type on compact Calabi–Yau manifolds with polystable tangent bundle (with respect to some Gauduchon metric on it) are locally homogeneous. In particular, if the geometric structure is rigid in Gromov’s sense, then the fundamental group of the manifold must be infinite. We also prove that compact complex manifolds of algebraic dimension one bearing a holomorphic Riemannian metric must have infinite fundamental group.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.