Abstract

We use holography to examine the response of interacting quantum fields to the appearance of closed timelike curves in a dynamically evolving background that initially does not contain them. For this purpose, we study a family of two-dimensional spacetimes that model very broad classes of wormhole time machines. The behavior of strongly coupled conformal theories in these spacetimes is then holographically described by three-dimensional AdS bulk geometries that we explicitly construct. The dual bulk spacetime is free from any divergences, but splits into two disconnected components, without and with CTCs, which are joined only through the boundary; then, passages across the chronology horizon are impossible for any field excitations. In dual terms, the strong self-interaction of the CFT decouples the pathological part from the rest of the spacetime. We also find that entangling the CFTs in two separate time machines connects them through a traversable bulk wormhole. Nevertheless, any entanglement-assisted chronology violations will be prevented by quantum bulk corrections, i.e., subleading 1/N effects, again without needing any gravitational backreaction of the CFT. We are led to speculate that chronology may be protected without involving Planck scale physics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.