Abstract

The issues of holography and possible links with gauge theories in spacetime physics is discussed, in an approach quite distinct from the more restricted AdS-CFT correspondence. A particular notion of holography in the context of black hole thermodynamics is derived (rather than conjectured) from rather elementary considerations, which also leads to a criterion of thermal stability of radiant black holes, without resorting to specific classical metrics. For black holes that obey this criterion, the canonical entropy is expressed in terms of the microcanonical entropy of an Isolated Horizon which is essentially a local generalization of the very global event horizon and is a null inner boundary of spacetime, with marginal outer trapping. It is argued why degrees of freedom on this horizon must be described by a topological gauge theory. Quantizing this boundary theory leads to the microcanonical entropy of the horizon expressed in terms of an infinite series asymptotic in the cross-sectional area, with the leading 'area-law' term followed by finite, unambiguously calculable corrections arising from quantum spacetime fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.