Abstract

In this note, we study 1/4- and 1/2-BPS co-dimension two superconformal defects in the 6d N\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$ \\mathcal{N} $$\\end{document} = (2, 0) AN−1 SCFT at large N using their holographic descriptions as solutions of 11d supergravity. In this regime, we are able to compute the defect contribution to the sphere entanglement entropy and the change in the stress-energy tensor one-point function due to the presence of the defect using holography. From these quantities, we are then able to unambiguously compute the values for two of the twenty-nine total Weyl anomaly coefficients that characterize 4d conformal defects in six and higher dimensions. We are able to demonstrate the consistency of the supergravity description of the defect theories with the average null energy condition on the field theory side. For each class of defects that we consider, we also show that the A-type Weyl anomaly coefficient is non-negative. Lastly, we uncover and resolve a discrepancy between the on-shell action of the 7d 1/4-BPS domain wall solutions and that of their 11d uplift.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call