Abstract

We proposed a three-dimensional (3D) holographic waveguide-type augmented reality (AR) system based on integral imaging using the mirror array. As same with the conventional holographic waveguide, two holographic optical element (HOE) films are utilized as in- and out-couplers, that are located at the input and output parts of the waveguide. The main role of the in-coupler HOE is that reflecting the light beams come from the micro display into the waveguide, and out-coupler reflects the transmitted light beams through the waveguide to the observer eye. On the basic of the main advantages of conventional holographic waveguide structure such as the light-weight and thin-size, the proposed system has an additional critical advantage that the observer can see the realistic 3D visualizations reconstructed by the outcoupler HOE-mirror array (HOE-MA), instead of simple two-dimensional images, with the real-world scenes at same time. In the experiment, the AR feature has been successfully verified that the real-world scene and reconstructed virtual 3D image were observed simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call